TIMETAL EXHAUST XT

Low Alloyed Titanium For Automotive & Motorcycle Applications

TIMETAL® EXHAUST XT[™] is a low-alloy content titanium alloy suited for automotive and motorcycle exhausts as well as other industrial applications. Weight savings in excess of 40% have been realized by substituting TIMETAL® EXHAUST XT[™] for stainless steel in automotive and motorcycle exhaust applications. TIMETAL® EXHAUST XT[™] exhibits superior oxidation resistance and elevated temperature strength compared to other commercially pure titanium alloys.

TABLE 1

CHEMICAL COMPOSITION

	WEIGHT	%
Min.	Nomimal	Мах.
-	-	0.50
0.15	0.45	0.60
0.02	-	0.15
-	-	0.10
-	-	0.03
-	-	0.015*
-	-	0.1
-	-	0.4
	Min. - 0.15	 0.15 0.45

^{*} Hydrogen content depends on product form

TABLE 2

PHYSICAL PROPERTIES

PROPERTY		VALU	ΙE
	Temp. F° (C°)	English	SI
Density	RT	0.163 lbs/in ³	4.51 g/cm ³
Thermal Conductivity	RT	9.2 Btu•ft/h•ft²•°F	15.9 W/m•°K
Specific Heat	RT	0.128 cal/g•°K	0.534 J/kg•°K
Diffusivity	RT	7.1 x 10 ⁻⁶ ft ² /s	0.0661cm ² /s
Mean Coefficient of Thermal Expansion	77-212 (25-100) 77-932 (25-500) 77-1472 (25-800)	5.3 x 10 ⁻⁶ /°F 5.8 x 10 ⁻⁶ /°F 5.5 x 10 ⁻⁶ /°F	9.6 x 10 ⁻⁶ /°C 10.4 x 10 ⁻⁶ /°C 10.0 x 10 ⁻⁶ /°C

TABLE 3

TYPICAL ROOM TEMPERATURE MECHANICAL PROPERTIES

_	CONDITION		TENSILE PROPERTIES			FORMABILITY
			Ultimate Tensile Strength ksi (MPa)	0.2% Yield Strength ksi (MPa)	Elongation %	Bend Radius
	Annealed	Minimum	60 (414)	50 (345)	20	4T
	Sheet	Typical	84 (581)	77 (531)	30	<2T

TABLE 4

TYPICAL COLD FORMING PROPERTIES FOR SHEET

Direction	n	K ksi (MPa)	r-value	Ericksen* in (mm)
Transverse	0.089	111 (768)	3.8	~0.3
				(7.7)
Longitudinal	0.152	133 (915)	2.1	

^{*} Gauge: 0.025 in (0.064 mm) Note: $\sigma = K\epsilon^n$

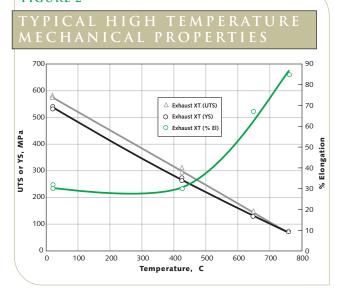
TABLE 5

CREEP PROPERTIES AT 800°F (427°C)

Stress ksi (MPa)	Creep Rate % at 50 hrs	Creep Rate (in/in/hr)
10 (69)	0.029	0.0004
20 (138)	0.108	0.0015
\		

TABLE 6

GENERAL CORROSION


Media	Concentration	Temperature	Corrosion Rate mpy (mm/y)
Hydrochloric	1%	Boiling	80.6 ^a (2.05)
Acid			
Nitric Acid	40%	Boiling	35.6 ^b (0.904)
Title / tela	10 /0	Doming	33.0 (0.301)

- a Typical CP Ti Grade 2 is approximately 70 mpy
- b Typical CP Ti Grade 2 is approximately 25 mpy

Note:

- Crevice Corrosion: No major attack is observed in a 5% NaCl solution at 90° C at pH 4 or 8 for 30 days.
- Stress Corrosion Cracking (SCC): No cracks or failures are observed in ASTM seawater at (pH 4) at 90° C or 150° C for 30 days

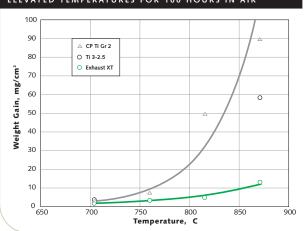

FIGURE 2

FIGURE 1

OXIDATION RESISTANCE

COMPARISON OF WEIGHT GAIN BETWEEN EXHAUST XT AND CP TITANIUM GRADES AFTER EXPOSURE AT ELEVATED TEMPERATURES FOR 100 HOURS IN AIR

The data and other information contained herein are derived from a variety of sources, which TIMET believes are reliable. Because it is not possible to anticipate specific uses and operating conditions, TIMET urges you to consult with our technical personnel on your particular applications.

For more information, please contact the Timet Sales Office/ Service Center nearest you, TIMET's Technical Laboratories or TIMET's Website @ www.timet.com

CONTACT INFORMATION

NORTH AMERICA

Hartford, CT	860-627-7051
Toronto, OH	740-537-5600
St. Louis, MO	800-753-1550
Dallas, TX	817-329-5035
Tustin, CA	714-573-1000

EUROPE

Birmingham, England	+ 44-121-356-1155
Savoie, France	+ 33-4-79-89-73-73
Dusseldorf, Germany	+ 49-211-230-880

TECHNICAL SUPPORT

Henderson, NV	702-566-4416	
Birmingham, England	+ 44-121-332-5381	
Savoie, France	+33-4-79-89-73-02	
\		